Molar Mass and Size Measurement of Proteins via Tandem Flow Field Fractionation-Light Scattering

Wyatt N. Vreeland, Ph.D.
Chemical Engineer
Material Measurement Laboratory
National Institute of Standards & Technology
12 Feb 2015

PARTI Field Flow Fractionation

The Basics

A Brief History

• J. Calvin Giddings (1930-1996), Prof., Univ. of Utah

 Described FFF in 1976, Science (1976): 1244-1245

Avid outdoors man

The Ground Rules

Particles must be smaller than the length perpendicular to the elution axis

Rparticle << Thickness channel

©2011 Google - Imagery ©2011 TerraMetrics - Terms of Use

What FFF Can Do?

- Separates particles on the ratio of two (pseudo) orthogonal physicochemical properties
- Can separate "delicate" or "soft" colloidal particles
- Different from chromatography because there is NO STATIONARY PHASE

Typical analytical column packing surface area =

 m^2

Typical analytical FFF channel

font sized normalized to a log₁₀ scale of relative surface area

PART II Absolute Size Measurement

MultiAngle Laser Light Scattering
$$R(\theta) = K^*Mc\ P(\theta)$$
 Refractive index $R(\theta) = K^*Mc\ P(\theta)$ $R^* = \frac{4\pi^2 n_0^2}{\lambda_0^4 N_A} \left(\frac{dn}{dc}\right)^2 \frac{1}{P(\theta)} = 1 + \frac{16\pi^2}{3\lambda^2} A_2 \sin^2\frac{\theta}{2}$

Absolute Size Determination R_g & D_T or R_h

Radius of Gyration

Measure the angular dependence of scattered light

$$R(\theta) = \frac{4\pi^{2}n_{0}^{2}}{N_{A}\lambda_{0}^{4}} \left(\frac{dn}{dc}\right)^{2} MwP(\theta) \left[1 - 2A_{2}MwP(\theta)\right]$$

Translational Diffusion Coefficient -or-Hydrodynamic Radius

Measure the time dependent fluctuation of scattered light

$$g(\tau) = \frac{\langle I(t) \cdot I(t+\tau) \rangle}{\langle I(t) \rangle^2} = e^{-q^2 D_T \tau} \qquad q = \frac{4\pi n_0}{\lambda} \sin(\theta z)$$

A Case Study: GroEL

Tetradecamer assembly 57 kDa monomer 798 kDa complex Nickname: "Shake-N-Bake"

dRI (concentration)

.Jow angle LS (noisy)

medium angle LS (high S:N ratio

high angle LS (high S:N ratio)

A Case Study: GroEL

Tetradecamer assembly 57 kDa monomer 798 kDa complex Nickname: "Shake-N-Bake"

 $R_n = 22.4 \text{ nm}$ $R_w = 22.3 \text{ nm}$ $R_z = 22.2 \text{ nm}$ (large uncertainty)

 $M_n = 775.1 \text{ kDa}$ $M_w = 789.6 \text{ kDa}$ $M_z = 804.7 \text{ kDa}$ (small uncertainty)

A Case Study: GroEL

Tetradecamer assembly 57 kDa monomer 798 kDa complex Nickname: "Shake-N-

Bake"

 $D_{t \text{ (avg)}} = 4.33e^{-8} \text{ cm}^2/\text{sec}$ $R_{h} = 8.2 \text{ nm}$

Future Directions

Inter-comparison of AIST and NIST techniques to these nascent measurement challenges

Exploration of large experimental space:

- Storage conditions
- Lyophilization protocols
- Reconstitution techniques

Move biological measurements to a more quantitative dogma

Ideas

Thoughts

Suggestions

